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Analytical models and experimentally derived models are often represented in the modal
co-ordinates. The modal models include natural modes and their displacements. The scaling
of the modes is arbitrary, and thus the scaling factor can be freely chosen. By the proper
choice of the scaling factor one obtains controllability and observability grammians of a
structure that are almost equal, and the system model is almost balanced. This new model
is given either in the form of a second order differential equation or in state space
representation. The properties of the almost-balanced modes and structures are derived,
including its H2, Ha and Hankel norms. The norms of the modes and of the system are
expressed in terms of the modal parameters, such as natural frequencies, modal damping,
and input and output gains. The properties of the almost balanced structure are used to
reduce the model. In particular, the H2, Ha and Hankel system norms are used to evaluate
and to minimize the reduction error. Next, the method of placement of actuators or sensors
in the almost-balanced co-ordinates is presented. The norm of the almost-balanced mode
with a set of actuators (or sensors) is the root-mean-square sum of the norms of this mode
for each single actuator (or sensor). Using this property one finds a specified number of
actuator or sensor locations such that the system performance evaluated at these locations
is close to that of the system with a larger set of candidate locations.
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1. INTRODUCTION

The properties of a structural model depend on the co-ordinates chosen for its
representation. The most common, but not always the most convenient, are the nodal
co-ordinates, which consist of the nodal displacements and velocities. Structural analysts,
as well as test engineers, prefer to deal with modal models. The physical accessibility of
the modal variables and the independence of the modes make the modal approach suitable
for measurements and is convenient in analysis. However, the modes are scaled arbitrarily,
and thus the modal models are not unique. The system matrices, such as the natural
frequency matrix and the modal damping matrix, are invariant under the modal scaling,
while the input and output matrices depend on it. By having the freedom to choose the
scaling parameter, one can determine it such that the mode controllability and
observability measures are almost identical. In this case the obtained system is almost
balanced. In this paper the almost-balanced co-ordinates are introduced. The
almost-balanced structure has several useful properties that allow it to be reduced in an
almost optimal manner, and allocate the sensors or actuators in the way that the system
norm is maximized.

Model reduction techniques are important tools in system dynamics and control. The
order of the dynamic system model should be small, but should cause small output errors
when compared to the full model output. The ‘‘compactness’’ of a model is particularly
important in controller design, where often the controller order (and, of course, its
complexity) depends on the system order. Many reduction techniques have already been

0022–460X/97/200669+19 $25.00/0/sv960847 7 1997 Academic Press Limited



. 670

developed. Reduction methods such as those of Hyland and Bernstein [1] and of
Wilson [2, 3], give optimal results, but they are complex and computationally
expensive. Other, non-optimal methods include balanced and modal truncation; see Moore
[4] and Skelton [5, 6]. Model reduction of flexible structures is more specific, and it has
been studied by Gregory [7], Jonckheere [8], Skelton [6], Gawronski and Juang [9],
Gawronski and Williams [10] and Gawronski [11]. In this paper we present the
near-optimal truncation approach in almost-balanced co-ordinates, in terms of H2, Ha and
Hankel norms.

The problem of placing a small number of actuators or sensors such that their
performance would be close to the larger set of actuators or sensors has obvious practical
applications. Typically, the actuator/sensor placement problem is computationally
complex because it requires a search and evaluation of a large number of placement cases;
see, for example, Aidarous et al. [12], Basseville et al. [13], DeLorenzo [14], Kammer [15],
Kim and Junkins [16], Lim [17], Lim et al. [18], Lim and Gawronski [19], Lindberg and
Longman [20], Longman and Alfriend [21], Maghami and Joshi [22] and Skelton and
DeLorenzo [23]. Here we use the properties of the almost-balanced representation to
develop a simple method of placement which gives the performance of a small set of
actuators (sensors) that is close to the performance of the initial large set.

2. BALANCED SYSTEMS

Consider a linear, stable, observable and controllable system with the state space
representation (A, B, C). The controllability and observability grammians are the
stationary solutions of the Lyapunov equations

AWc +WcAT +BBT =0, ATWo +WoA+CTC=0. (1)

For stable A the solutions Wc and Wo are positive definite. The grammians characterize
the controllability and observability properties of a system. The system triple is balanced
if its controllability and observability grammians are equal and diagonal, as defined by
Moore [4]: Wc =Wo =G2, G=diag (g1, . . . , gn ), gi e 0, i=1, . . . , n, where the positive
variable gi is the ith Hankel singular value of the system.

3. DEFINITION OF FLEXIBLE STRUCTURE

A flexible structure is a linear system represented by the following second order matrix
differential equation:

Mq̈+Dq̇+Kq=Bou, y=Coqq+Covq̇. (2)

In this equation q is the nd ×1 displacement vector, u is the s×1 input vector, y is the
output vector, r×1, M is the mass matrix, nd × nd , D is the proportional damping matrix,
nd × nd (see Meirovitch [24] for the definition of the proportional damping), K is the
stiffness matrix, nd × nd , the input matrix Bo is nd × s, the output displacement matrix Coq

is r× nd , and the output velocity matrix Cov is r× nd . The number nd is the number of
degrees of freedom of the system (linearly independent co-ordinates describing the
finite-dimensional structure), r is the number of outputs, and s is the number of inputs.
The mass matrix is positive definite, and the stiffness and damping matrices are positive
semi-definite.
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4. SECOND ORDER MODELS

Depending on the chosen co-ordinates, the structural second order equation (2) can be
presented in different forms. Furthermore, we consider the modal and the almost-balanced
co-ordinates, and related modal and almost-balanced second order models.

4.1.  

Modal co-ordinates are willingly used, since the displacements in these co-ordinates are
independent, and the modes, which define the modal transformation, can be easily
measured. Let F(nd × p) be the modal matrix, which consists of p natural modes of a
structure, pE nd . Using this matrix one obtains the diagonal modal mass, stiffness and
damping matrices Mm =FTMF, Km =FTKF and Dm =FTDF.

4.1.1. System representation
Introduce a new variable qm , such that q=Fqm . Substituting q in equation (2) one

obtains the modal model as follows:

q̈m +2ZVq̇m +V2qm =Bmu, y=Cmqqm +Cmvq̇m , (3)

where Z=M−1/2
m K−1/2

m Dm is the matrix of modal damping, and V=M−1
m Km is a diagonal

matrix of natural frequencies V=diag (v1, v2, . . . , vp ); Bm is the modal input matrix,
Bm =M−1

m FTBo , and Cmq , Cmv are the modal displacement and rate output matrices,
respectively; Cmq =CoqF and Cmv =CovF.

Note that the second order modal model has two output matrices. We introduce an
equivalent output matrix, Cm , as a combination of the output matrices Cmq and Cmv :

Cm =CmqV
−1 +Cmv . (4)

The two-norm of Cm is called a system gain. It has the property

>Cm>2
2 = >CmqV

−1>2
2 + >Cmv>2

2, (5)

where >X>2 is the Euclidean norm of X, >X>2 = tr (XXT). With the output matrix defined,
the model equation (3) is alternatively presented as a quadruple (V, Z, Bm , Cm ) and is
called a modal second order representation.

4.1.2. Mode representation
The modal equation (3) can be written as a set of p independent equations for each

model displacement

q̈mi +2zivi q̇mi +v2
i qmi = bmiu, yi = cmqiqmi + cmviq̇mi , i=1, . . . , p, (6)

and cmi is defined as the ith mode equivalent output matrix

cmi =
cmqi

vi
+ cmvi . (7)

In the above equations, yi is the system output due to the ith mode dynamics, while bmi

is the ith row of Bm , and cmqi , cmvi and cmi are the ith columns of Cmq , Cmv and Cm ,
respectively. The quadruple (vi , zi , bmi , cmi ), corresponding to equation (6), is the
representation of the natural mode, while >bmi>2 and >cmi>2 are the input and output gains
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of the ith mode. It is easy to see that the system gains are the r.m.s. sum of the modal
gains:

>Bm>2 =Xs
p

i=1

>bmi>2
2, >Cm>2 =Xs

p

i=1

>cmi>2
2. (8)

4.2. - 

Define a diagonal transformation matrix R=diag (ri ), i=1, . . . , p, where the ith entry
ri is a root of the ratio of the modal input and output gains,

ri =z>bmi>2/>cmi>2. (9)

The scaled natural modes, fabi = rifi , i=1, . . . , p, are called the almost-balanced modes.
The almost-balanced mode matrix Fab =[fab1 fab2 · · · fabp ] is obtained from the generic
modal matrix as

Fab =FR. (10)

This matrix diagonalizes the mass and the stiffness matrices

FT
abMFab =R2Mm , FT

abKFab =R2Km . (11)

4.2.1. System representation
The almost-balanced model is the one with the displacement qab obtained by scaling the

modal displacement qm ; i.e., qm =Rqab . By introducing this equation to the modal equation
(3) one obtains the almost-balanced second order model

q̈ab +2ZVq̇ab +V2qab =Babu, y=Cabqqab +Cabvq̇ab , (12)

where

Bab =R−1Bm , Cabq =CmqR, Cabv =CmvR. (13)

The equivalent output matrix Cab of the almost-balanced model is a combination of the
output matrices Cabq and Cabv :

Cab =CabqV
−1 +Cabv . (14)

It has the property

>Cab>2
2 = >CabqV

−1>2
2 + >Cabv>2

2. (15)

The equation (12) is alternatively presented as a quadruple (V, Z, Bab , Cab ) and is called
the almost-balanced second order representation.

4.2.2. Mode representation
Since the displacement of the ith almost-balanced mode qabi is

qabi = qmi /ri , (16a)

equation (12) can be written as a set of p independent equations for each almost-balanced
displacement:

q̈abi +2zivi q̇abi +v2
i qabi = babiu, yi = cabqiqabi + cabviq̇abi , i=1, . . . , p, (16b)
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and cabi is the ith mode equivalent output matrix

cabi =
cabqi

vi
+ cabvi . (17)

In the above equations, yi is the system output due to the ith almost-balanced mode
dynamics, and babi is the ith row of Bab , and cabqi , cabvi and cabi are ith columns of Cabq , Cabv

and Cab , respectively. The quadruple (vi , zi , babi , cabi ) corresponding to equation (16) is the
representation of the almost-balanced mode.

Define >babi>2 as the input gain of the ith almost-balanced mode, and >cabi>2 as the output
gain of the same mode. In the second order almost-balanced model, the input and output
gains are equal:

>babi>2 = >cabi>2. (18)

In order to prove this, the transformation R as in equation (9) is introduced to equations
(13) and (14):

>babi>2 = >bmi>2/>ri>2 = >bmi>2z>cmi>2/>bmi>2 =z>bmi>2>cmi>2, (19a)

>cabi>2 = >cmi>2ri = >cmi>2z>bmi>2/>cmi>2 =z>bmi>2>cmi>2, (19b)

which shows that equation (18) holds.
The relationship between the modal, balanced and almost-balanced representation is

illustrated in Figure 1. In this figure almost-balanced co-ordinates are co-linear with the
modal co-ordinates, and are almost identical with the balanced co-ordinates.

4.2.3. Controllability and observability grammians
The controllability and observability grammians are defined in the state space

representation, and in general cannot be obtained explicitly from the second order model.
However, we will show that the approximate grammians can be obtained from the
almost-balanced second order model. Moreover, in this model the grammians are almost
equal and diagonal, thus the model is almost balanced.

The controllability (wc ) and observability (wo ) grammians for the second order almost
balanced model are given as

wc =0·25Z−1V−1 diag (BabBT
ab), wo =0·25Z−1V−1 diag (CT

abCab ), (20)

Figure 1. Modal, balanced, and almost-balanced co-ordinates.
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Figure 2. A simple system.

where diag (BabBT
ab) and diag (CT

abCab ) denote the diagonal parts of BabBT
ab and CT

abCab ,
respectively. Therefore, the ith diagonal entries of wc and wo are

wci =
>babi>2

2

4zivi
, woi =

>cabi>2
2

4zivi
, (21)

In order to prove this, define the following state vector:

xab =$Vqab

q̇ab % (22)

associated with the following state space representation

A=$ 0
−V

V

−2ZV%, B=$ 0
Bm%, C=[CmqV

−1 Cmv ]. (23)

By inspection, for this representation the grammians are diagonally dominant, in the form

Wc 2$wc

0
0
wc%, Wo 2$wo

0
0
wo%, (24)

where wc and wo are the diagonally dominant matrices, wc 2 diag (wci ) and wo 2 diag (woi ).
Introducing equations (23) and (24) to the Lyapunov equations (1), one obtains equation
(20).

We showed earlier that for the almost-balanced model the input and output gains are
equal; i.e., >babi>2 = >cabi>2. Hence it can be determined from equation (21) that the model
is approximately balanced; that is, Wc 2Wo 2G2. In terms of the second order grammians,
we have wc 2wo 2 g2, where g=diag (g1, g2, . . . , gp ) and

g2
i 2 >babi>2

2

4zivi
2 >cabi>2

2

4zivi
, (25)

Example 1. The simple system is shown in Figure 2, with masses m1 =m2 =m3 =1 and
stiffness k1 = k2 = k3 = k4 =3. Its damping matrix is proportional to the stiffness matrix,
D=0·01K. There is a single input force at mass 3, and three outputs: the displacement
and velocity of mass 1, and the velocity of mass 3. The modal model is determined. For
this system the natural frequency matrix is V=diag (3.1210, 2.1598, 0.7708), the modal
matrix is

F= & 0·5910
—0·7370

0·3280

0·7370
0·3289

−0·5910

0·3280
0·5910
0·7370'
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and the modal damping is Z=diag (0.0156, 0.0108, 0.0039). The modal input and output
matrices are Bm =[0.3280 −0.5910 0.7370]T,

Cmq = &0·5910
0
0

0·7370
0
0

0·3280
0
0 ', Cmv = &00·5910

0·3280

0
0·7370

−0·5910

0
0·3280
0·7370'

and therefore, from equation (4),

Cm = &0·1894
0·5910
0·3280

0·3412
0·7370

−0·5910

0·4255
0·3280
0·7370'.

The input and output gains are: >bm1V2 =0·3280, >cm1V2 =0·7020, >bm2V2 =0·5910,
>cm2V2 =1·0044, >bm3V2 =0·7370, >cm3V2 =0·9120. The almost-balanced model of the
simple structure is determined. The transformation matrix R from equation (9) is
R=diag (0·6836, 0·7671, 0·8989). Almost-balanced input and output matrices are
obtained from equations (13) and (14):

Bab = & 0·4798
−0·7705

0·8198', Cabq = &0·4040
0
0

0·5653
0
0

0·2948
0
0 ',

Cabv = &00·4040
0·2242

0
0·5653

−0·4534

0
0·2948
0·6625', Cab = &0·1294

0·4040
0·2242

0·2617
0·5653

−0·4534

0·3825
0·2948
0·6625'.

Finally, it is easy to check that the input and output gains are equal; namely,
>bab1>2 = >cab1>2 =0·4798, >bab2>2 = >cab2>2 =0·7705 and >bab3>2 = >cab3>2 =0·8198. Also,
from equation (25) one obtains wc1 =wo1 =1·1821, wc2 =wo2 =6·3628 and
wc3 =wo3 =55·8920, which shows that the model is almost balanced, since the exact Hankel
singular values for this system are g2

1 =1·1794, g2
2 =6·3736 and g2

3 =56·4212.

5. STATE SPACE MODELS

Similarly to the second order models, the modal and the almost-balanced state space
models are derived.

5.1.  

Introduce the state vector xm , which consists of p modal states, xT
m = {xT

m1 xT
m2 . . . xT

mp}.
The ith modal state, xmi , is defined as xmi = {viqT

mi q̇T
mi}T (see Gawronski [11]), where qmi

and q̇mi are the ith modal displacement and velocity.
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5.1.1. System representation
The triple (Am , Bm , Cm ) corresponding to the state vector xm is the modal state space

representation of a flexible structure. It has block-diagonal matrix Am , and the related
blocks of Bm and Cm :

Am =diag (Ami ), Bm =[BT
m1 . . . BT

mp]T, Cm =[Cm1 . . . Cmp ], (26)

i=1, 2, . . . , p, where Ami , Bmi and Cmi are 2×2, 2× r and s×2 blocks, respectively:

Ami =$ 0
−vi

vi

−2zivi%, Bmi =$0
bi%, Cmi =$cqi

vi
cvi%. (27)

5.1.2. Mode representation
The triple (Ami , Bmi , Cmi ) is the state space representation of the ith mode. It follows from

the diagonal form of Am that the state equation can be written as a set of p equations for
each mode:

ẋmi =Amixmi +Bmiu, yi =Cmixmi , i=1, . . . , p. (28)

The above mode equation is a state space equivalent of the modal equation (6).
Note that >Bmi>2 and >Cmi>2 are the input and the output gains of the ith mode, since

>Bmi>2 = >bmi>2, >Cmi>2 = >cmi>2. (29)

Example 2. The state space modal model of form 2 for the system from Example 1 is
as follows:

0 3·1210 0 0 0 0

−3·1210 −0·0974 0 0 0 0

0 0 0 2·1598 0 0
Am =G

G

G

G

G

K

k

0 0 −2·1598 −0·0466 0 0
G
G

G

G

G

L

l

,

0 0 0 0 0 0·7708

0 0 0 0 −0·7708 −0·0059

Cm = &0·1894
0
0

0
0·5910
0·3280

0·3412
0
0

0
0·7370

−0·5910

0·4255
0
0

0
0·3280
0·7370'

and BT
m =[0 0·3280 0 −0·5910 0 0·7370]. The input and output gains are

>Bm1>2 =0·3280, >Cm1>2 =0·7020, >Bm2>2 =0·5910, >Cm2>2 =1·0044, >Bm3>2 =0·7370 and
>Cm3>2 =0·9120.

5.2. - 

The almost-balanced state, xab , is obtained from the modal state xm using the
transformation xm =Rabxab , where Rab is a diagonal matrix,

Rab =diag (Rabi ), Rabi = riI2, i=1, . . . , p (30)

and ri is given by equation (9).

5.2.1. System representation
The triple (Aab , Bab , Cab ) is the almost-balanced state space representation. The matrix

Aab is the same as the modal matrix, since Aab =R−1
ab AmRab =R−1

ab RabAm =Am . The matrices
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Bab and Cab are obtained by scaling the modal matrices Bm and Cm ; i.e., Bab =R−1
ab Bm and

Cab =CmRab .

5.2.2. Mode representation
Similarly to the modal representations, the almost-balanced state vector xab is divided

into p modal states, xT
ab = {xT

ab1 xT
ab2 . . . xT

abp}. With each state,

xabi = xmi /ri , (31a)

the mode state space representation (Aabi , Babi , Cabi ) and the state equation

ẋabi =Aabixabi +Babiu, yi =Cabixabi (31b)

is associated.
In the almost-balanced state space representation (Aabi , Babi , Cabi ) the input and output

gains are equal:

>Babi>2 = >Cabi>2 =z>Bmi>2>Cmi>2, (32)

which can be proven by applying the transformation Rab as in equation (30) to the input
and output matrices.

The above properties show that the system matrix Aab of the almost-balanced
representation is independent of the actuator and sensor location, and that the orientation
of the almost-balanced and modal co-ordinates is identical, although of different scale.

5.2.3. Controllability and observability grammians
The grammians of the almost-balanced representation are in the form

Wc 2 diag (Wci ), Wci =wciI2, Wo 2 diag (Woi ), Woi =woiI2, (33)

where wci and woi are given by equation (21). Since wci 2woi , the system is almost balanced;
that is, G2 2Wc 2Wo , where G2 diag (g1, g1, g2, g2, . . . , gnd , gnd ), and

g2
i 2 >Babi>2

2

4zivi
=

>Cabi>2
2

4zivi
. (34)

Example 3. The almost-balanced representation of the simple system from Example 1
is obtained. Using the modal state space representation, as in Example 2, one finds the
transformation matrix Rab as in equation (30); Rab =diag (0·6836, 0·6836, 0·7671, 0·7671,
0·8989, 0·8989). The state matrix is Aab =Am , while the Bab and Cab are
BT

ab =[0, 0·4798, 0, −0·7707, 0, 0·8198] and

Cab = &0·1294
0
0

0
0·4040
0·2242

0·2617
0
0

0
0·5653

−0·4534

0·3825
0
0

0
0·2948
0·6625'.

In this representation equation (32) holds; namely, >Bab1>2 = >Cab1>2 =0·4798,
>Bab2>2 = >Cab2>2 =0·7705 and >Bab3>2 = >Cab3>2 =0·8198. The grammians obtained for
this model are almost equal; i.e., G2 2Wo 2Wc =diag (1·1817, 1·1817, 6·3627, 6·3627,
56·5585, 56·5585).

6. MODE AND SYSTEM NORMS

For flexible systems in the almost-balanced representation, the Hankel, H2 and Ha

norms are determined in terms of their parameters. The norms serve as system measures
and are used later in model reduction and in the actuator/sensor placement procedures.
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6.1.  

The Hankel norm of a system is a measure of the effect of its past input on its future
output, or the amount of energy stored in, and subsequently retrieved from the system [25,
p. 103], and given by >G>2

h = lmax (WoWc ), where lmax ( · ) denotes the largest eigenvalue.

6.1.1. Mode norm
Consider the ith almost-balanced mode in the state space form (Aabi , Babi , Cabi ), or the

corresponding second order form (vi , zi , babi , cabi ). Its Hankel norm is

>Gabi>h = g2
i . (35)

6.1.2. System norm
The Hankel norm of the system is the largest norm of its modes; i.e.,

>Gab>h 2max
i

>Gabi>h = g2
max, (36)

where gmax is the largest Hankel singular value of the system.

6.2. 2 

Let (A, B, C) be a system state space representation, and let G(v)=C( jvI−A)−1B be
its transfer function. The H2 norm of the system is defined as

>G>2
2 =

1
2p g

+a

−a

=G(v)=2 dv, or as >G>2
2 = tr (CTCWc ), (37)

where Wc is a solution of the Lyapunov equation (1).

6.2.1. Mode norm
Let Gabi (v)=Cabi ( jvI−Aabi )−1Babi be the transfer function of the ith almost-balanced

mode. From the definition of the norm, one obtains

>Gabi>2 =ztr (CT
abiCabiWcabi )=

>Babi>2>Cabi>2

z2Dvi

2 >Babi>2
2

z2Dvi

2 >Cabi>2
2

z2Dvi

2zDvig
2
i , (38)

where Dvi =2zivi is the half-power frequency [26, pp. 157 and 165]. For the norm of the
second order almost-balanced representation (vi , zi , babi , cabi ), replace Babi and Cabi with babi

and cabi , respectively. Note also that >Gabi>2 is the modal cost of Skelton [6].

6.2.2. System norm
Let Gab (v)=Cab ( jvI−Aab )−1Bab be the transfer function of the almost-balanced

structure. Since its controllability grammian Wcab is diagonally dominant, its H2 norm is

>Gab>2
2 = tr (CT

abCabWcab )3 s
p

i=1

tr (CT
abiCabiWcabi )= s

p

i=1

>Gabi>2
2; (39)

i.e. the system H2 norm is, approximately, the root-mean-square (r.m.s.) sum of the modal
norms:

>Gab>2 2Xs
p

i=1

>Gabi>2
2. (40)

Example 4: H2 norms of modes and the system. For the simple system in the
almost-balanced co-ordinates (second order, Example 1; or state, Example 3) one finds the
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H2 mode norms, from equation (38): >Gab1>2 =0·5219, >Gab2>2 =1·9420 and
>Gab3>2 =6·1289. According to equation (40), the system norm is >Gab>2 =6·4504.

6.3. a 

The Ha norm of the system, (A, B, C), is defined as

>G>a =sup
v

smax (G(v)), (41)

where G is the system transfer function and smax (G(v)) is the largest singular value of G.

6.3.1. Mode norm
Consider the ith almost-balanced mode (Aabi , Babi , Cabi ), or (vi , zi , babi , cabi ). Its Ha norm

is estimated as

>Gabi>a 2 2g2
i . (42)

In order to prove it, note that the largest amplitude of the mode is approximately at the
ith natural frequency; thus,

>Gabi>a 2 smax (Gabi (vi ))=
smax (CabiBabi )

2zivi
=

>Babi>2>Cabi>2

2zivi
2 2g2

i . (43)

6.3.2. System norm
Due to the near-independence of the modes, the system Ha norm is the largest of the

mode norms; i.e.,

>Gab>a 2max
i

>Gabi>a 2 2g2
max, (44)

where gmax is the largest Hankel singular value of a structure.
Example 5: Ha norms of modes and systems. For the simple system in almost-balanced

co-ordinates (second order, Example 1; or state, Example 3) one finds the Ha mode norms,
from equation (42), >Gab1>a 2 2g2

1 =2·3635, >Gab2>a 2 2g2
2 =12·7253,

>Gab3>a 2 2g2
3 =113·1169, and the system Ha norm is the largest mode norm,

>Gab>a 2maxi >Gabi>a = >Gab3>a =113·1169 i=1, 2, 3. The actual Ha norm, determined
from equation (44), is >Gab>a =113·1170.

Example 6. Consider a truss, presented in Figure 3. For this structure, l1 =20 cm,
l2 =30 cm, and each truss has a cross-sectional area of 1 cm2, a Young’s modulus of
2·1×107 N/cm2, and a mass density of 7·85×10−3 kg/cm3. Vertical control forces are
applied at nodes n7 and n8, and the output rates are measured in the vertical direction
at nodes n3 and n4. The system has 26 states (13 modes), two inputs and two outputs.
For this structure the natural frequencies, H2 norms and Ha norms of each mode are given
in Table 1. The exact Hankel singular values, and the approximate ones, obtained from
equations (34) or (25), are shown in Figure 4. A good coincidence between the exact and
the approximate values is observed.

Figure 3. A truss.
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T 1

Mode norms of the truss

Natural frequency (rad/s) >Gi>2 >Gi>a

232·1 0·25581 0·11683
927·1 0·18616 0·09296

1304·8 0·00006 0·00003
1785·2 0·32224 0·16953
3359·2 0·09598 0·04627
3457·4 0·06527 0·03235
3648·9 0·14568 0·06646
3890·2 0·00099 0·00048
4089·9 0·04971 0·02452
4220·4 0·41664 0·21239
4237·7 0·04989 0·02543
4852·2 0·02623 0·01251
5479·1 0·01100 0·00487

7. MODEL REDUCTION

Model reduction is a part of a dynamic analysis of structures. Typically, a model with
a large number of degrees of freedom, such as one developed for static analysis, causes
numerical difficulties when applied to dynamic analysis, not to mention computational
cost. On the other hand, in system identification the order of the identified system is
determined by the reduction of the oversized model. Finally, in structural control the
complexity and performance of a controller depends on the rational order reduction of
the structural model. In all cases, the reduction is a crucial part of analysis and design.

A reduced order model of a linear system is obtained here by truncating appropriate
modes of the almost-balanced model. Denote xab the almost-balanced state vector of p
modes (n=2p states), and (Aab , Bab , Cab ) is the almost-balanced representation. Let xab be
partitioned, xT

ab =[xT
abr xT

abt], where xabr is the vector of the retained states, and xabt is a vector
of the truncated states. If there are kQ p retained modes, xabr is a vector of 2k states, and
xabt is a vector of 2( p− k) states. The reduced model is obtained by deleting the last
2( p− k) rows of Aab , Bab and the last 2( p− k) columns of Aab , Cab . The problem is how
to order states so that the retained states xabr will be the best reproduction of the full system
response. The choice depends on the definition of the reduction index.

The error between the full and reduced system is used for the reduction evaluation. We
have taken two approaches in the evaluation of the reduction error. The first approach
is based on the H2 norm, and is connected to the Skelton reduction method [6]. The second
is based on the Ha and Hankel norm, and is connected to the Moore reduction method [4].

Figure 4. Exact (solid line) and approximate (dashed line) Hankel singular values of the truss.



-  681

7.1. 2  

The H2 error is defined as

e2 = >G−Gr>2, (45)

where G is the transfer function of the full model and Gr is the transfer function of the
reduced model. Its interpretation is as follows. Let the impulse input be applied to the full
and reduced system; y is the impulse response of the full system and yr is the impulse
response of the reduced system. Then e2 = >y− yr>2; thus e2 is the root-mean-square
(r.m.s.) measure of the output error due to impulse input.

The squares of the mode norm are additive—see equation (40)—therefore the norm of
the reduced system with k modes is the r.m.s. sum of the mode norms,

>Gr>2
2 2 s

k

i=1

>Gi>2
2. (46)

Thus, the reduction error is

e2
2 2 >G>2

2 − >Gr>2
2 2 s

p

i= k+1

>Gi>2
2. (47)

It is clear from the above equation that the near-optimal reduction is obtained if the
truncated mode norms >Gi>2 for i= k+1, . . . , p are the smallest ones. Therefore, the
almost-balanced mode vector is rearranged, starting from the mode with the largest H2

norm and ending with the mode with the smallest norm. Truncation of the last p− k
modes will give, in this case, a near-optimal reduced model of order k.

7.2.   a  

It can be seen from equations (35) and (42) that the Ha norm is approximately twice
the Hankel norm; hence the reduction using one of those norms is identical with the
reduction using the other one. Therefore, here we consider the Ha reduction only.

The Ha reduction error is defined as

ea = >G−Gr>a. (48)

It was shown by Glover [27] that the upper limit of the Ha reduction error is

ea = >G−Gr>a E s
n

i= k+1

>Gi>a. (49)

However, for the flexible structures in the almost-balanced co-ordinates the error can be
estimated less conservatively. In this case the transfer function is approximately a sum of
its modes; that is,

G3 s
p

i=1

Gi , Gr 2 s
k

i=1

Gi ; (50)

thus

G−Gr 2 sp
i= k+1 Gi =Gt , (51)
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Figure 5. H2 (solid line) and Ha (dashed line) normalized errors of the truss.

where Gt is the transfer function of the truncated part. Therefore,

ea = >G−Gr>a 2 >Gt>a 2 >Gk+1>a. (52)

It is clear that the near-optimal reduction is obtained if the Ha norms of the truncated
modes are the smallest ones. Moore [4] and Glover [27] showed that the reduced model
is stable.

Example 7. A simple system is considered, as in Example 1. For this system the Ha

modal norms are obtained from equations (34) and (42): >G1>a 2 6·7586 (mode of the
natural frequency 1·3256 rad/s), >G2>a 2 4·9556 (mode of the natural frequency
2·4493 rad/s), >G3>a 2 2·6526 (mode of the natural frequency 3·200 rad/s). The H2 mode
norms are as follows: >G1>2 2 3·2299, >G2>2 2 3·3951, >G3>2 2 0·5937. The reduction
errors after reduction of the last mode (of frequency 3·200 rad/s) are e2 =0·7959 and
ea =3·5182.

Example 8. Consider a truss, as in Example 6. Its model has been reduced in the
almost-balanced co-ordinates using the H2 and Ha norms. The normalized errors
d2 = o2/>G>2 and da = oa/>G>a were computed using equations (45) and (48), respectively.
The plot of the errors with respect to the number of modes of the reduced model is given
in Figure 5. Both errors are close to each other, and the plot indicates that an error smaller
than 0·1 is obtained for the reduced models which contain eight or more modes. The
accuracy of the estimation of the H2 reduction error is shown in Figure 6, where the solid
line refers to the accurate reduction errors obtained from the H2 norm definition, and the
dashed line refers to the estimated reduction errors obtained from equation (47). The plot
shows that the accuracy of error estimation is satisfactory.

Figure 6. Actual (solid line) and estimated H2 (dashed line) normalized errors for the truss.
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8. ACTUATOR AND SENSOR PLACEMENT

For the purposes of structural testing and control, it is useful to investigate possible
sensor and/or actuator locations, and to evaluate their impact on the dynamic test results,
or on the closed loop performance. Given a large set of sensors and actuators, the
placement problem consists of determining the locations of a smaller subset such that the
H2 or Ha norm of the subset is close to the original set. Here the placement problem is
solved in the almost-balanced co-ordinates using the previously derived properties. In this
case a comparatively simple methodology of choice of a small subset of sensors and/or
actuators from a large set of possible locations is proposed.

Let R and S be the sets of the candidate actuator and sensor locations, respectively.
These are chosen in advance to be all allowable locations of actuators, of population R,
and all allowable locations of sensors, of population S. The placement of r actuators within
the given R actuator candidate locations, and the placement s sensors within the given S
sensor candidate locations, are considered. Of course, the number of candidate locations
is larger than the number of actuators or sensors; i.e., rQR and sQS.

8.1.      

8.1.1. H2 norm
Now consider a flexible structure in the almost-balanced representation. The H2 norm

of the ith mode is given by equation (38), where >Babi>2 and >Cabi>2 are the input and output
gains of the ith mode. The input and output matrices are Babi =[Babi1 Babi2 . . . BabiR ],
Cabi =[CT

ab1i CT
ab2i . . . CT

abiS]T, and Babij is the 2×1 block of the jth input, while Cabji is the
1×2 block of the jth output. In this notation one obtains

>Babi>2
2 = s

R

j=1

>Babij>2
2, >Cabi>2

2 = s
S

k=1

>Cabki>2
2. (53)

Introducing equation (53) to equation (38), one obtains

>Gi>2
2 2 s

R

j=1

>Gij>2
2, or >Gi>2

2 2 s
S

k=1

>Gik>2
2, (54a)

where

>Gij>2 =
>Babij>2>Cabi>2

2zzivi

, >Gik>2 =
>Babi>2>Cabki>2

2zzivi

(54b)

are the H2 norms of the ith mode with the jth actuator only, or the ith mode with the
kth sensor only. Equation (54a) shows that H2 norm of a mode with a set of actuators
(sensors) is the r.m.s. sum of the H2 norms of this mode wth a single actuator (sensor).

8.1.2. Ha norm
A similar relationship can be obtained for the Ha norm. From equation (42), one obtains

>Gi>a 2 >Babi>2>Cabi>2

2zivi
. (55)

Introducing equation (53) to equation (55), one obtains

>Gi>2
a 2 s

R

j=1

>Gij>2
a, or >Gi>2

a 2 s
S

k=1

>Gik>2
a, (56a)
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where

>Gij>a =
>Babij>2>Cabi>2

2zivi
, >Gik>a =

>Babi>2>Cabki>2

2zivi
(56b)

are the Ha norms of the ith mode with the jth actuator only, or the ith mode with the
kth sensor only. Equation (56a) shows that the Ha norm of a mode with a set of actuators
(sensors) is the r.m.s. sum of the Ha norms of this mode with a single actuator (sensor).

8.2.  

Two similar problems can be distinguished: actuator placement and sensor placement.
Due to their similarity, the actuator placement problem only is considered.

8.2.1. H2 placement indices
Denote by G the transfer function of the system with all R actuators. The placement

index ski that evaluates the kth actuator at the ith mode in terms of the two-norm is defined
with respect to the all modes and all admissible actuators:

ski = >Gki>2/>G>2, k=1, . . . , R, i=1, . . . , p. (57)

In applications, it is convenient to represent the two-norm placement indices as a
placement matrix:

s11 s12 · · · s1k · · · s1R

s21 s22 · · · s2k · · · s2R

· · · · · · · · · · · · · · · · · ·
S=G

G

G

G

G

K

k

si1 si2 · · · sik · · · siR
G
G

G

G

G

L

l

C ith mode. (58)

· · · · · · · · · · · · · · · · · ·

sp1 sp2 · · · spk · · · spR

V

kth actuator

8.2.2. Ha placement indices
Similarly to the two-norm index, the placement index ski that evaluates the kth actuator

at the ith mode in terms of the infinity-norm is defined in relation to all modes and all
admissible actuators:

ski = >Gki>a/>G>a, k=1, . . . , R, i=1, . . . , p. (59)

Using the above indices, one introduces the infinity-norm placement matrix S of similar
structure as in equation (58).

8.2.3. Actuator and mode indices
The placement matrix S gives an insight into the placement properties of each actuator,

since the placement index of the kth actuator is determined as the root-mean-square
(r.m.s.) sum of the kth column of S. The vector of the actuator placement indices is defined
as sa =[sa1 sa2 . . . saR ]T, and its kth entry,

sak =Xs
p

i=1

s2
ik , k=1, . . . , R, (60)
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T 2

Placement indices, sai

Actuator
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

1 2 3 4 5 6 7 8

Example 9 0·3671 0·4944 0·3328 0·4460 0·2626 0·4921 — —
Example 10 0·0967 0·3516 0·1260 0·5932 0·0936 0·3519 0·1219 0·5932

is the placement index of the kth actuator. It is the r.m.s. sum of the kth actuator indexes
over all modes. The actuator placement index, sak , is a non-negative contribution of the
kth actuator at all modes to the controllability and observability properties of the
structure.

Similarly, the vector of the mode indices can be defined as sm =[sm1 sm2 . . . smnd ]
T, and

its ith entry is

smi =Xs
p

k=1

s2
ik , i=1, . . . , nd (61)

is the index of the ith mode. It is the r.m.s. sum of the ith mode indexes over all actuators.
The modal index, smi , is a non-negative contribution of the ith mode for all actuators to
the controllability and observability properties of the structure.

From the above properties it follows that the index sak characterizes the importance of
the kth actuator; thus it serves as the actuator placement index. Namely, the actuators with
small index sak can be removed as the least significant ones. Note also that the mode index
smi can also be used either as a placement index in cases in which modes of the required
controllability and observability level are sought, or as a reduction index. Indeed, it
characterizes the significance of the ith balanced mode for the given locations of sensors
and actuators. The controllability and observability of the least significant modes (those
with the small index smi ) should either be enhanced by the reconfiguration of the actuators
or sensors, or be eliminated (i.e., the system order is reduced).

Example 9. The truss from Figure 3 is considered. Its outputs include vertical
displacements at nodes n7 and n8, respectively. The following actuators are considered:
(1) force in the bar connecting nodes n2 and n1; (2) force in the bar connecting nodes n3
and n2; (3) force in the bar connecting nodes n6 and n5; (4) force in the bar connecting
nodes n7 and n6; (5) force in the bar connecting nodes n2 and n6; and (6) force in the
bar connecting nodes n3 and n7. The task is to find the two best inputs within the given
six candidates using the infinity-norm indices.

The placement indices sai , i=1, . . . , 6 of each actuator are given in Table 2. The indices
from the table point out that the second actuator (connecting nodes n3 and n2) and the
sixth actuator (connecting nodes n7 and n3) are the most appropriately located.

Example 10. The same truss is considered, with the same outputs. The eight candidate
actuator locations are given: (1) horizontal force at node n3; (2) vertical force at node n3;
(3) horizontal force at node n4; (4) vertical force at node n4; (5) horizontal force at node n7;
(6) vertical force at node n7; (7) horizontal force at node n8; and (8) vertical force at node
n8. The task is to find the best two inputs within the candidate locations.

The actuator indices sai obtained from equation (60) are presented in Table 2. The results
indicate that the locations 4 (vertical force at node n4), and 8 (vertical force at node n8)
are the best choices.
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T 3

Second order and state space models of an almost-balanced mode

Second order model State space model

Equation Equation (16b) Equation (31b)
Co-ordinates qabi , equation (16a) xabi , equation (31a)
Transformation from modal co-ordinates 1/ri , equation (9) I2/ri , equation (30)
Gains Equation (18) Equation (32)
Grammians Equation (20) Equation (33)
Hankel singular values Equation (25) Equation (34)
H2 norm Equation (38) Equation (38)
Ha norm Equation (42) Equation (42)

9. CONCLUSIONS

Structural engineers use predominantly second order models in structural analysis. Some
quantities, such as controllability and observability grammians, system norms, and system
properties such as balanced systems, have been developed by control engineers for the
purposes of control system design. We have shown that these quantities and properties
can be interpreted for the second order system by introducing proper scaling of the modal
co-ordinates. Moreover, we have shown that the modal H2, Ha and Hankel norms are
obtained from the system modal parameters and its input and output gains. Also, it was
demonstrated that the system H2 and Ha norms are r.m.s. sums of the mode norms. The
relationship between the second order almost-balanced modes and state space
almost-balanced modes is summarized in Table 3.

The almost-balanced representation was used to model reduction of flexible structures,
as well as to place the actuators (or sensors). It was shown that the almost-balanced
co-ordinates allow for near-optimal model reduction of structures, in the sense of H2, Ha

and Hankel norms. It was also shown that one can place the system actuators and sensors
to satisfy specified H2 and Ha norm criteria. This is done by using the superposition of
a modal norms of a single actuator (sensor) to obtain the modal norm of a set of actuators
or sensors.
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